
X-650-73-286

SMALL INTERACTIVE IMAGE
PROCESSING SYSTEM (SMIPS)

SYSTEM DESCRIPTION

JOHANNES G. MOIK

(NASA-TM-X-70473) SMALL INTERACTIVE IMAGE N73-32085
PROCESSING SYSTEM (SMIPS) SYSTEM
DESCRIPTION (NASA) 48 p HC

CSCL 09B Unclas
G3/08 18196

SEPTEMBER 1973

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dep:,:!ninnt of Commorco
Sprrulild, VA. 22151

X-650-73-286

SMALL INTERACTIVE IMAGE PROCESSING SYSTEM (SMIPS)

SYSTEM DESCRIPTION

Johannes G. Moik*
Code 650.1, Goddard Space Flight Center

Greenbelt, Maryland 20771

September, 1973

*National Academy of Sciences
Research Associate

NASA-Goddard Space Flight Center
On Leave of absence from Institut fuer Angewandte

Mathematik und Informationsverarbeitung
Technische Hochschule Graz, Austria

/

SMALL INTERACTIVE IMAGE PROCESSING SYSTEM (SMIPS)

SYSTEM DESCRIPTION

Johannes G. Moik
Code 650.1, Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The SMIP system description gives detail of the executive
portion of the Small Interactive Image Processing System
(SMIPS). The system operates under control of the IBM-OS/
MVT operating system and uses an IBM-2250 model 1 display
unit as interactive graphic device. The input language in the
form of character strings or attentions from keys and light
pen is interpreted and causes processing of built-in image
processing functions as well as execution of a variable num-
ber of application programs kept on a private disk file. Ma-
jor design goals were minimal impact on overall computer
system performance, convenient communication between user
and system, modularity and fast input/output routines.

This document contains a description of design considerations
and summarizes characteristics, structure and logic flow of
SMIPS. It discusses also data management and graphic pro-
gramming techniques used for the interactive manipulation
and display of digital pictures.

Preceding page blank

iii

CONTENTS

Page

ABSTRACT iii

1. INTRODUCTION 1

2. DESIGN CONSIDERATIONS 2

3. FUNCTIONAL CHARACTERISTICS 4

4. STRUCTURE OF THE SMIP SYSTEM 6

4.1 STATE DIAGRAM OF SMIPS 6

4.2 DIALOGUE ENVIRONMENT 8

4.2. 1 Supervisor Module VICINT 8

4.2.2 Dialogue Processor INTRPRET10

4.3 INPUT ENVIRONMENT 14

4.4 TASK PROCESSING ENVIRONMENT 23

4.4.1 Task Characteristics 24

4.4.2 Communication between SMIPS and Application
Programs 25

4.4.3 Communication between Application Programs 25

4.4.4 Adding or Replacing a Program in a Library 27

5. DATA ORGANIZATION IN SMIPS 28

5.1 DATA STRUCTURES 28

5.2 OPERATIONS ON THE DATA STRUCTURES 30

5.3 INTERFACE SMIPS TO OS/360 31

5.4 DATA MANAGEMENT IN SMIPS ,...... 32

v Preceding page blank

CONTENTS (Continued)

Page

6. GRAPHIC PROGRAMMING TECHNIQUES 34

6.1 DEFINITION OF AN IMAGE 34

6.2 IMAGE STRUCTURES 35

6.3 DESCRIPTION OF THE IBM 2250 DISPLAY UNIT 37

6.4 PROGRAMMING THE 2250 DISPLAY UNIT 39

6.5 COMMUNICATION HANDLING 40

6.6 COMMUNICATION WITH THE 2250 DISPLAY UNIT 41

7. LIGHT PEN TRACKING 41

REFERENCES 42

ILLUSTRATIONS

Figure Page

1 State Diagram of SMIPS... 7

2 State Diagram of Dialogue Environment 9

3 INTRPOC Flowchart (1 of 3) 11

4 JCL for VICINT 14

5 INTRPRET Flowchart (I of 3) 15

6 READ Command Processor Flowchart 18

7 TAPOS Flowchart 19

8 DISPLAY Command Processor Flowchart (1 of 2) 20

vi

ILLUSTRATIONS (Continued)

Figure Page

9 JCL for INTRPRET 22

10 TASKPROC JCL 24

11 Parameter Table 26

12 Mail Block Format 26

13 27

14 27

15 Correspondence Picture Name-Picture Values 32

16 Structured Display File 35

17 Scaled Display File 36

18 Display File Tree. 37

19 Buffer Control Table 39

20 Graphic ControlBlock. 41

vii

SMALL INTERACTIVE IMAGE PROCESSING SYSTEM

SYSTEM DESCRIPTION

1. INTRODUCTION

Digital image processing involves the pictoral or numerical display of raw image
data, the restoration or enhancement of images, the display of results as maps
or photographs and the detection of objects. This requires examination of the
image data from many different viewpoints.

The Small Interactive Image Processing System (SMIPS) is a tool with which the
human experimenter can interact with the computer system. It is intended to
gain experience in interactive image processing and to provide better communi-
cation between user and computer. The system has been developed to give the
user flexible and convenient control of a variety of image processing methods.
It provides a dialogue environment in which image processing functions are im-
mediately executed and an input mode where requests are queued for later exe-
cution. Upon completion of processing steps the experimenter may investigate
the intermediate results and use the information obtained for the specification of
further analysis steps. SMIPS serves for a number of purposes:

1. Fast display of parts of pictorial data on the screen of a display device
either numerically or as a character representation. Sampling rate and
quantization levels can be changed by the user.

2. Computation and display of histograms.

3. Convenient specification of a variety of image processing tasks for res-
toration, enhancement and detection. The inclusion of classification
procedures is planned.

4. Output of numerical results and pictures as graphs, maps and photo-
graphs.

In a batch processing mode it is necessary to specify the entire analysis to be
performed prior to running the computer. This is inconvenient and may stretch
the period of performing a careful analysis over a long time. Often the experi-
menter is not familiar with the computer system and the special analysis pro-
grams available which further complicates a successful analysis.

An interactive system differs from a conventional one in its interface with the
user. By taking full advantage of the man-machine combination the efficiency

1

of a picture analysis can be increased considerably. By means of a display device
which allows also to control the computer, the user specifies his input and the
system displays the results on the screen. Thus the short time between specifi-
cation of a problem and' the return of intermediate results makes possible a more
intelligent choice and sequencing of the analysis steps that are applied to the pic-
tures.

This document describes the structure of the SMIP system, the system modules
and its various routines and the conventions for writing application programs.
It should enable a programmer to maintain, expand or modify the system. A
users manual for SMIPS is available [11.

2. DESIGN CONSIDERATIONS

The design of an interactive image processing system is greatly influenced by
data management problems because the large matrices representing digital pic-
tures cannot be contained entirely in core storage. An image processing system
needs, therefore, external mass storage, usually magnetic disk storage.

The raster-scan operation of image digitizers and scanning instruments on space-
crafts imposes a sequential-row access structure on the sampled image data.
Therefore, the fundamental unit of the data structure is one row of the image
matrix and a row is stored as one physical record on a sequential-access storage
medium, magnetic tape. Magnetic tapes are used as permanent storage for
large quantities of image data. It is natural to use the same data structure in an
image processing system and consequently to store images as sequential row
access files on magnetic disk during the execution of image processing programs.

Most of the image processing operations are performed on lines or columns of
a picture and random access is not required. Each access retrieves one row of
the image matrix which is processed and placed into another sequential file.
This structure, however, makes operations on columns difficult, e.g. the column
operations in a fast Fourier transform.

Storage of pictures on disk and accessing individual rows results in an I/O-bound
program. The elapsed time to transfer a picture line to core storage is usually
much longer than the time required for numerical computation on the data. The
situation can be improved by blocking, i.e. grouping of several logical records
into a physical. Thus, several logical records are transferred with one access
into core storage. This requires, however, a larger area in core storage. In

2

addition the time lost in waiting for I/O operations can be reduced by a good
I/O buffering system which attempts to supply new records as fast as old ones
are processed. The extent to which these I/O operations exceed the actual time
required for numerical computation determines how much an image processing
program becomes I/O-bound. Generally, the increase of main storage areas for
blocking and buffering will reduce the I/O-boundedness of a program.

The optimal design decision is dependent on the computer system used to operate
the image processing system. In a multiprogramming operating system an I/O-
bound program is no liability. In a multiprogramming system several different
programs reside in main memory simultaneously with only one program exe-
cuting at any given time. When the program in execution requests an I/O opera-
tion, its execution is suspended and another program begins execution. Concur-
rently a channel (peripheral processor) is assigned to perform the I/O operation
requested by the suspended program. Thus, an I/O-bound program does not
waste any of the total computing time of the central processor. As long as the
image processing system does not overburden the main memory of the computer,
there is room for other programs to share the memory. Thus, the chief impact
of the multiprogramming environment on the design of an image processing sys-
tem is to minimize the utilization of central processor and main memory.

Minimal main memory utilization is even more important in the design of an
interactive image processing system. In such a system short computations are
followed by relatively long periods of waiting for input from the user. These
periods of thinking and decision making may last several minutes. An adequate
environment for an interactive image processing system is a timesharing system
with paging, where parts of the program are transferred to external storage
during wait periods in order to free main storage for other users. In such a
system the design goal is to keep the page traffic between main storage and back-
ing storage to a minimum.

In a multiprogramming system with no dynamic allocation and deallocation of
resources (main storage, tape units, disk storage) like IBM-OS/360, all re-
sources needed by the interactive image processing system remain allocated
from start to end of operation and are not available to other users.

The SMIP system operates under OS-MVT, its major design goals are, there-
fore, minimal utilization of main storage and tape units at the expense of disk
space on scratch disk units and some overhead for unloading tapes if several
tapes are required in a sequence.

If a multiprogramming system is not available the design goal for an image pro-
cessing system is to make it as little I/O-bound as possible. These efforts in-
clude overlapping I/O operations and computation by buffering, optimal blocking

3

and disk separation if separate disks on independent channels are available. An
interactive image processing system can probably not be implemented in such an
environment if many other people request the use of the computer system.

3. FUNCTIONAL CHARACTERISTICS

The SMIP system is designed for digital processing and recording of pictoral data
in an interactive mode. Objectives of the system are convenient communication
with the computer by users who are not expert programmers, fast response to
requests for processing of pictures, complete error recovery as well as simpli-
fication of future programming efforts for extension of the system.

The SMIP system is intended for operation on an IBM 360 computer equipped
with an IBM-2250 Model 1 display unit. The current implementation runs on
either the 360/75 or the 360/91 computers at SESD of GSFC under OS/MVT-
Release 20.6. The system needs a core region of 200K bytes and uses one 9-
track and one 7-track tape unit and space on five scratch disk units. The 2250
display unit is used as display device, its alphameric keyboard, function keys
and light pen provide for convenient communication between user and computer.

To allow the use of already existing image processing programs and to avoid
considerable reprogramming effort, the SMIP system was made fully compatible
with the VICAR system designed at the Jet Propulsion Laboratory. A SMIPS
user can execute any image processing program contained in the VICAR Library
on the 360/75.

Operation of the SMIP system is similar to the use of a desk calculator. It is
a repeated sequence of single requests followed by responses. The user requests
a computation by typing a command, pressing a function key or using the light
pen. The system responds with the display of a message or picture on the screen
of the graphic terminal or by indicating the completion of the request with an
audible alarm signal. Thus, SMIPS is an interpretive system.

Three modes of operation can be distinguished. In the dialogue mode each com-
mand issued by the user is interpreted and the appropriate processor is called
for execution of the command. In the input mode each command is interpreted as
a request for an image processing task, the corresponding program should exist
in the systems library. These requests are inserted into the task queue TFILE.
Here lies the extendability of the system without increasing the core size, new
image processing programs are added to the library and can then be specified as
tasks in the input mode. The functions for these two modes are performed by
the system module VICINT which handles the communication between user and

4

computer and the input/output operations and by the system module INTRPROC
which contains the command interpreter and the processors associated with
each command.

The image processing tasks queued in the task queue are processed in the task
processing mode. Each task involves the execution of a program which must
exist in the system program library. Execution is started by deleting INTRPROC
from core. VICINT loads in its place a transient routine TASKPROC which reads
the task queue and initiates the first task. This task replaces TASKPROC in
core. Upon completion, TASKPROC is reloaded and the next task in initiated.
When the last task has been completed, control is returned to VICINT which re-
loads INTRPRET and waits for further input from the user.

The operation of SMIPS is controlled by a simple command language. There are
two groups of commands available. Commands of the first group involve the
manipulation of pictures, like creation and release of picture names, transfer
of pictures between magnetic tape and disk, display of pictures on the display
device and printing of pictures or histograms. Commands of this group are:

RESERVE create a picture name

FREE release a picture name

READ transfer a picture from tape to disk

WRITE transfer a picture from disk to tape

DISPLAY display a picture or its histogram

THRESHOLD segment a picture

PRINT (key 3) print the picture displayed on screen

PRINT (key 20) print the histogram displayed on screen

MOVE UP (key 12)

MOVE DOWN (key 24) shift the histogram displayed on the screen

SHRINK (key 17)

The second group of commands involves control of system operation and changing
of system parameters and operational environments. These commands are:

SET set various system parameters

EXECUTE execute the tasks in the task queue

DISCONNECT terminate after processing the task queue

5

EXIT terminate immediately

TASKS display tasks in task queue

TIME (key 4) display remaining time

NAMES (key 9) display currently used picture names

INPUT (key 10) enter input mode

PARAM (key 16) display system parameters

GUIDE (key 22) display users guide

EXIT (key 31) terminate immediately

Errors in the commands are detected, an explanatory message is displayed on
the screen and the system waits for specification of the correct command. This
error recovery feature makes the use of an interactive system very convenient
for there is little delay due to a mistake. A detailed description of the commands
is given in [1].

4. STRUCTURE OF THE SMIP SYSTEM

The SMIP system disposes of three operating environments, the dialogue environ-
ment, the input environment and the task processing environment. In this chap-
ter the three environments as well as the structure of the program modules in-
volved in their operation will be described in some detail.

4.1 STATE DIAGRAM OF SMIPS

The structure of the SMIP system can be described using a finite state machine
model. In the dialogue and input environment the system accepts input (control
information) from the user. These two environments provide for the interaction
between user and the system. In the task processing environment no interaction
is possible while the system processes previously specified tasks. The user has
to wait for completion of processing which is indicated by display of the cursor
and a single stroke audible alarm to attract the users attention.

The transfer from one environment to another is accomplished with commands
or function keys. Fig. 1 represents the state diagram of the SMIP system. It
shows the commands and events which leave the system in the same environ-
ment, as well as the conditions for transfer from one environment to another. A
detailed description of the commands is contained inthe SMIPS Users Manual [11.

6

TASK SPECIFICATION
(INSERT A TASK INTO

QUEUE)

INPUT
ENVIRON-

MENT

RESERVE, FREE
READ, WRITE
COMMANDS v DELETE COMMAND

(DELETE N TASKS
FROM QUEUE)

SET, SAVE 6
COMMANDS

DIALOGUE

ENVIRON- COM
MENTME

DISPLAY,

THRESHOLD N X
COMMAND I UE

TASK
NO P SPROCESSING

PROCESS NEXTENVIRON-

TASK IN QUEUE.

OS/360 91*
MVT

Figure 1. State Diagram of SMIPS

7

4.2 DIALOGUE ENVIRONMENT

The basic set of image processing functions is available in the dialogue environ-
ment. Each request is immediately executed. The commands available can be
used to perform allocation and deallocation of disk space for pictures (RESERVE,
FREE), transfer of pictures between disk and tape (READ, WRITE), display of
pictures, histograms and label information (DISPLAY) and change of various sys-
tem parameters (SET). Utility functions are provided to inform the user on the
current state of the system, i.e. remaining processing time (KEY 4), tasks in
input queue (TASKS), current value of system parameters (KEY 16) and current
status of the catalogue of existing pictures in the system (KEY 9). Control func-
tions permit display of a brief users guide (KEY 22), execution of the image pro-
cessing programs in the task queue (EXECUTE), termination with previous pro-
cessing of the programs in the task queue (DISCONNECT) and immediate termina-
tion (EXIT or KEY 31).

In the dialogue mode two SMIP system modules VICINT and INTRPRET are in
main memory. VICINT is loaded into main memory when the system is started
and is the only permanent core resident module of SMIPS. Its main functions are
to enable the communication between user and computer, to provide the interface
to the data management functions of OS/MVT and to load and delete the modules
INTRPRET and TASKPROC as well as the image processing programs into main
memory. The state diagram for the dialogue environment is shown in Fig. 2.

4.2.1 Supervisor Module VICINT

The supervisor module VICINT is the core resident part of SMIPS. It contains
the interactive handler INTPROC, the Input/Output handler and some utility rou-
tines. INTPROC allocates the IBM-2250 display device, assigns buffer storage to
it, establishes the routines to handle attentions from light pen, function keys and
end-of-block key and allocates a work area where display files are assembled for
efficient transfer between main memory and the 2250-buffer. A brief guide to the
usage of the SMIP system is displayed on the screen and INTPROC waits for a
continuation signal. Upon receiving this signal from key 0 the permanently dis-
played figures (headline, frame) and the cursor for input from alphameric key-
board are displayed and the module INTRPRET is loaded into main memory.

This module contains the scanner, interpreter and the routines to construct the
display files for the display of pictures, histograms and label information, the
routines for transfer of pictures between tape and disk, routines for light pen
tracking and for processing the task specification statements. After loading, the
transfer vector containing the addresses of the core resident routines referenced
in INTRPRET is built and the system enters a wait state awaiting attentions from
the user.

8

TERMINATE
CORRECTION

PRINT PICTURE WITH END KEY
(KEY 2) "

END LIG 3
(TERM. A POLYGON)

KEY 26

DELETE LAST 2
LINE KEY 25

SELECT FOR CORRECTION
4 WITH LIGHT PEN

DRAW A LINE 0 Z
KEY 29 9Q PRINT HISTOGRAM
AND 0 O (KEY 20)

LIGHT PEN .

DISPLAY 1 CO GRA

SYSTEM
PARAMETERS

KEY 16 COTI

DISPLAY DISPLAY
CATALOGUE REMAINING TIME

KEY 9 KEY 4

SHIFT HISTOGRAM
UP - KEY 12

DOWN - KEY 24
SHRINK- KEY 17

STATES:

1 DIALOGUE STATE (WAIT FOR ANY COMMAND VALID IN THE DIALOGUE ENVIRONMENT)

2 PICTURE DISPLAY STATE (WAIT FOR NUMERICAL DISPLAY, PRINT OR CONTINUE
COMMAND)

3 NUMERICAL PICTURE DISPLAY STATE (WAIT FOR PICTURE ELEMENT CORRECTION OR RE-
TURN TO STATE 2)

4 HISTOGRAM DISPLAY STATE (WAIT FOR PRINT, SHIFT OR CONTINUE COMMAND)

5 LIGHT PEN TRACK STATE (WAIT FOR DRAW A LINE, DELETE A LINE, TERMINATE A
POLYGON OR NOTRACK COMMAND)

Figure 2. State Diagram of Dialogue Environment

9

When an attention occurs it is interpreted by INTPROC and the appropriate action
is taken. Attention from an enabled function key causes transfer of control to
the routine associated with this key.

Upon an attention from the END key the character string up to the cursor in the
input figure is transferred to main memory, the length of the string is determined
and control is passed to entry point SCAN in the module INTRPRET. SCAN
checks the command for syntactic correctness, interprets the command and
branches to the corresponding routine or returns immediately with an appropriate
code.

The following return codes and the associated actions are possible:

RC = 0 wait for attentions from the user

RC = 1 process the image processing tasks waiting in the task queue. The mod-
ule INTRPRET is deleted from memory to free core for linking the
module TASKPROC. This module reads one task specification from the
task queue, constructs the load sequence to link the appropriate image
processing program and performs label and parameter processing for
this program. This sequence is repeated until the task queue is empty
and control returns to INTPROC which reloads the module INTRPRET
and waits for user attentions. RC = 1 is caused by the EXECUTE
command.

RC = 2 disconnect the 2250 display device, close all open data sets, free buf-
fers and work areas and return to OS. This is caused by the EXIT
command.

RC = 3 disconnect the 2250 display device, free the work area and then perform
the actions RC = 1. After that close all open data sets and return to OS.
This sequence is caused by the DISCONNECT command.

The flowchart of INTPROC is given in Fig. 3, Fig. 4 shows the JCL statements
required to link VICINT.

4. 2. 2 Dialogue Processor INTRPRET

The function of the dialogue processor INTRPRET is to process the commands
issued by the user. It is loaded automatically into core upon start of SMIPS and
each time after completion of processing of the tasks in the input queue. The
main parts of INTRPRET are the scanner which checks the command string
entered by the user at the alphameric keyboard for illegal characters, the inter-
preter which interprets the correct commands and the different command pro-
cessors for processing the commands. Upon completion control is returned to

10

ENTRY

SBUILD DISPLAY
DISPIN FILE, TRANSFER

IT TO BUFFER

INITIALIZE AND START

DISPLAY UNIT DISPLAY REG.

ALLOCATE

BUFFER

YES MODULE
SPECIFY INTRPRET

ATTENTION INCORE
HANDLING ?
ROUTINES

NO

LOAD MODULE
READ INTRPRET AND

CATALOGUE BIND ADDRESSES
FOR COMMUNI-

CATION

PICTURES
IN YES

CATALOGUE DISPLAY
? O TABLE WITH

NO PICTURE
MOVE PICTURE NAMES

SET DEFAULT LENGTH & BLOCK-
LINE LENGTH SIZE TO

& BLOCKSIZE COMMON/LRECL/ 2
FOR PICTURES

LIGHT

DISPLAY ENABLED

CONTINUE ON KEYS
ATTENT. KEY 0

IS A

1 1 CURSORIN
INPUT

FIGURE
REMOVE CURSOR ?

3

Figure 3. INTPROC Flowchart (1 of 3)

11

3

INSERT CURSOR KEY4 YES DISPLAY
AT BEGIN INPUT T REMAININGME

FIGURE AND
TIME

SOUND ALARM NO

DISPNAM

WAIT KEY 9 YES DISPLAY
FOR INPUT PICTURE 2
FROM USER NAMES

NO

ATTENTION
TYPE FUNCTION KEY INPUT

END KEY NO

TRANSFER DISPVAL
INPUT STRING

FROM 2250 BUFFER KEY16 YES DISPLAY
TO MAIN MEMORY 7 SYSTEM 2

PARAMETERS

SCAN

BRANCH TO
ENTRY SCAN IN

INTRPRET
SCAN AND KEY22 YES
INTERPRET N
COMMAND

NO

TRACK
EXECUTE

OR DISCONNECT 5 KEY 28 YES PERFORM
COMMANDE LIGHTPEN

? TRACKING

NO NO

EXIT YES
COMMAND 6 KEY 31 NO 2

NO

Figure 3. INTPROC Flowchart (2 of 3)

12

DELETE
MODULE
INTRPRET

FROM CORE

LINK MODULE
TASKPROC

AND PROCESS
USER TASKS

NO DISCONNECT YES
COMMAND

LOAD MODULE DEALLOCATE

INTRPRET BUFFERS,
AND BIND DISCONNECT

ADDRESSES DISPLAY UNIT

2 SAVE
PICTURE

CATALOGUE

RETURN TO OS

Figure 3. INTPROC Flowchart (3 of 3)

13

// EXEC LINK,PARM='XREF,LIST,MAP'
//SYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
// DD DSN=SYS2.LINKLIB,DISP=SHR
// DD DSN=K3.T1DAK.T1005.LVICARSB,D ISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS2.FORTLIB,DISP=SHR
//SYSLMOD DD DSN=K3.SOJGM.S111.VICINT,DISP=OLD
//SYSLIN DD *
INCLUDE LIBRY(INTPROC)
INCLUDE LIBRY(DISPIN)
INCLUDE LIRRY(VBLOCK)
INCLUDE LIBRY(SYSMSG)
INCLUDE LIBRY(DISPNAM)
INCLUDE LIBRY(DISPVAL)
ENTRY INTPROC
NAME VICINT(R)

//LIBRY DD DSN=K3.SOJGM.S0002.PAXII,DISP=SHR

Figure 4. JCL for VICINT

VICINT with the appropriate return code. The flowchart for INTRPRET is
shown in Fig. 5.

Each command has a processor associated with it to perform processing of the
request. The flowchart for the READ command processor is shown in Fig. 6.
The flowchart of the routine TAPOS in the READ command processor is given
in Fig. 7. Fig. 8 shows the flowchart for the DISPLAY command processor.

4.3 INPUT ENVIRONMENT

Image processing with the functions provided by the module INTRPROC is very
restricted. To allow more advanced operation and the expansion of the system
within the limited amount of main memory available, the program module
INTRPROC has to be replaced by a particular image processing program. Upon
completion of this task INTRPROC is reloaded into main memory, its previous
state is restored and the system waits for further interaction with the user.

In many cases a sequence of such image processing functions can be performed
without a required intermediate action by the user. To avoid the overhead of
deleting and reloading the dialogue processor the input mode is provided by the
system. In the input environment each input from the alphameric keyboard is
interpreted as a task specification. Each such image processing request is
inserted into a queue of tasks for later processing. All the image processing
programs in the SMIP- and VICAR system library can be used in this mode.

14

ENTRY

MODULE INTRPRET
SCANNER

DISPLAY
INPUT STRING
ON SCREEN

DELIMITERS: b

INITIALIZE
POINTERS TO IN LEGAL CHAR.: b = () + - ' %
& OUT BUFFER S . * >

CLEAR OUT BUFFER

GET NEXT
CHARACTER

ADVANCE OUT
POINTER TO
NEXT FIELD

YES IS IT
LAST CHAR.

NO

SEARCH FOR

CHARACTER YES NEXT DELIMITER
AINSERT UP TO

8 LEGAL CHARS
INTO OUTBUFFER

NO

SEARCH FOR
s YES NEXT DELIM.

CCONVERT NUMBER
ATO BINARY AND

INSERT IN OUTBUF
NO

YES CHAR LEGAL
CHARACTER

NO

SYSMSG

MESSAGE:
'ILLEGAL

CHARACTER'

RETURNI

Figure 5. INTRPRET Flowchart (1 of 3)

15

INTERPRETER

RESERVE COMMAND PROCESSOR

CHECK IF NAME
ALREAOY RE- SET RECORD
ALREADY RE-

RESERVE YES SERVED,CHECK LENGTHAND
COMMAND IF SPACE AVAIL- INSERT PICTURE2

? ABLE ON VOLUME NAMEINTABLE
REQUESTED

NO
READ COMMAND PROCESSOR

CHECK CORRECT DETERMINEIF TRANSFER

FORMAT OF 7 OR 9 TRACK TAPE PICTURE FROM

COMMAND COMMAND MOUNT TAPE & TAPE TO DISK

CHECK IF DISK POSITION TO SET USED-FLAG

SPACE RESERVED FILE SPECIFIED FOR PICTURE
NAMENO

WRITE COMMAND PROCESSOR

CHECK CORRECT MOUNT 7 OR

WRITE YES FORMAT OF 9 TRACK TAPE
COMMAND COMMAND, POSITION AND 2

? CHECK IF PICTURE WRITE PICTURE
TO BE WRITTEN EXISTS TO TAPE

NO
DISPLAY COMMAND PROCESSOR

CHECK IF PICTURE TRANSFER PICTURE DETERMINE
TO BE DISPLAYED TO CORE IF LESS DISPLAY TYPE,

DISPLAY YES EXISTS, IF AN- 200 x 200 SET GET DISPLAY
COMMAND OTHER PICTURE SIZE-FLAG FOR PARAMETERS,

? WAS MODIFIED TRANSFORMATION BUILD DISPLAY
IN CORE RETURN ROUTINES FILE WITH

NO
SET COMMAND PROCESSOR

GET DISPLAY APPROPRIATE
PARAMETERS TRANSFORMATIONSET YES ROUTINE AND

COMMAND AND INSERT DISPLAY PICTURE
IN APPROPRIATE

TABLE HISTOGRAM OR
LABEL

NO
THRESHOLD COMMAND PROCESSOR

CREATE A
THRESHOLDED

THRESHOLD YES PICTURE WITH
COMMAND GREYLEVELS

? BY SET
COMMAND

NO
SAVE COMMAND PROCESSOR

CHECK IF NEW
PICTURE NAME

SAVE YES RESERVED.
COMMAND COPY PICTURE 0 2

FROM CORE
TO DISK

NO

Figure 5. INTRPRET Flowchart (2 of 3)

16

3

TASK SPECIFICATION PROCESSOR

CHECK IF CORRECTCHECK IF I
INPUT YES TASK SPECIFI- AND OUTPUT
MODE CATION, CHECK IF PICTURES

? TASK IN LIBRARY SERVED, INSERT
TASK INTO UEE

NO

E TASKS COMMAND PROCESSOR

DISPLAY TASKS
TASKS YES IN INPUT

COMMAND QUEUE ON
SCREEN OF 2250

NO FREE COMMAND PROCESSOR

DELETE PICTURE
FREE YES NAME FROM

COMMAND TABLE,RETURN
? DISK SPACE TO

FREE POOL

EXECUTE COMMAND PROCESSOR

CLOSE INPUT
EXECUTUE YES QUEUE FILE,
COMMAND RESET QUEUE

? POINTER, DISPLAY
EXECUTION MESS.NONO DISCONNECT COMMAND PROCESSOR

DISCONNECT YES CLOSE INPUT RETURN2
COMMAND QUEUE FILE

NO EXIT COMMAND PROCESSOR

EXIT YES CLOSE INPUT
COMMAND QUEUE FILE

NO

SYSMSG

MESSAGE:
'INVALID 2
COMMAND'

Figure 5. INTRPRET Flowchart (3 of 3)

17

ENTRY

SYMSG

NAME MESSAGE:
IN NO I 'PICTURE

2
CHECK CORRECT

FORMAT OF
COMMAND, 1 TAPIO
SET TAPE
FORMAT PERFORM

PICTURE
TRANSFER

SYSMSG FROM TAPE
TO DISK.

IS MESSAGE:
FILE # NO 'FILE #NEG.'

CORRECT OR 'SAME FILE
? CANNOT BE READ'

SET INITIALI-
+ YES ZATION FLAG

SET 7 OR 9
TRACK TAPE

TAPE NO SET NEW TAPE
MOUNTED W VOL-SER RETURN

< ? NUMBER

TAPOS

UNLOAD OLD
TAPE, MOUNT

NEW TAPE,
POSITION TO

FILE SPEC.

Figure 6. READ Command Processor Flowchart

18

SAVE REGISTERS
LINK SAVE

AREAS AND
GET PARAMET.

SET DEVICE
TYPE TO TAPE

IN MCB

Is UNLOAD TAPE
TAPE ,NO BY OPEN AND

MOUNTED CLOSE WITH
DISP OPTION

YES

XSETFILE

INSERT VOL-SER-
NO AND FILE

SEQU. NUMBER
IN JFCB

SET DENSITY
IN DCB

RETURN

Figure 7. TAPOS Flowchart

19

ALIZE D NTRYCONTAINS

SYSMSG

NAME \ I MESSAGE:

IN NO NO DATA'RE

CATALOGUE I NAME NOT
?/I RESERVED'

YES

SYSMSG

MESSAGE:
PICTURE NO 'PICTURE

INITIALIZED
? NO DATA'

YES

is
PICTURE \YES
IN CORE

NO

is
ANOTHER NO READ LABEL

PICTURE IN SET
CORE SET

YES

DETERMINE
HAS PICTURE SIZE

NO
IT BEEN NO

MODIFIED

YES Is
PICTURE NO READ PICTURE

> 200 X 200 TO CORE
TURN OFF ?

CORE FLAGYES
YES

SYSMSG
SET SET

MESSAGE: LARGE FLAG CORE FLAG
'SAVE MODI-
FIED PICT.'

Figure 8. DISPLAY Command Processor Flowchart (1 of 2)

20

2

PICTURE YES DISPLAY NO
PLAY PARAMETERS

SPEC.

NO YES PICTUR
PICOSP

PICTURE
PROCESS TRANSFOR-
DISPLAY : MATION AND

PARAMETERS DISPLAY
ROUTINES

HISTOGRAM YES DISPLAY NO

? SPEC.

SHISTOG

HISTOGRAM
DISPLAY TRANSFORM.
PARAMS AND DISPLAY

ROUTINES

DOCUM

YES LABEL
LABEL DISPLAY

'INVALID
DISPLAY

COMMAND'

RETURN

Figure 8. DISPLAY Command Processor Flowchart (2 of 2)

21

Checking the syntactic correctness of the command as well as the availability of
the specified program is done in this mode. Only correct requests for available
programs are inserted into the task queue. If the program is not in the library,
the user will be notified with the message 'taskname NOT IN LIBRARY'. These
operations are performed by the routine TASKQ in INTRPROC. The command
END returns control to the dialogue environment. Fig. 9 shows the JCL state-
ments for linking all routines of the module INTRPRET.

// EXEC LINK,PARM='XREF,LIST,MAP,LET'
//SYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
// DD DSN=SYS2.LINKLIB,DISP=SHR
// DD DSN=K3.T1DAK.T1005.LVICARSB,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS2.FORTLIB,DISP=SHR
//SYSLMOD DD DSN=K3.SOJGM.SlO11.VICINT, DISP=OLD
//SYSLIN DD *
INCLUDE SYSLIB(FAKIBCOM)
INCLUDE LIBRY(LINK)
INCLUDE LIRRY(SCAN)
INCLUDE LIBRY(DISPQ)
INCLUDE LIRRY(TRACK)
INCLUDE LIBRY(NUMRIC)
INCLUDE LIBRY(NUMDSP)
INCLUDE LIBRY(PICTUR)
INCLUDE LIBRY(PICDSP)
INCLUDE LIRRY(THRESH)
INCLUDE LIBRY(PICPRT)
INCLUDE LIRRY(PUTMAIL)
INCLUDE LIBRY(DOCUM)
INCLUDE LIBRY(HISTGR)
INCLUDE LIBRY(HISTOG)
INCLUDE LIRRY(PRHIST)
INCLUDE LIRRY(PRTITL)
INCLUDE LIBRY(PRCHK)
INCLUDE LIBRY(TAPOSIT)
INCLUDE LIBRY(TAPIO)
INCLUDE LIBRY(CHCKRT)
INCLUDE LIBRY(TASKQ)
ENTRY INTRPRET
NAME INTRPRET(R)

//LIBRY DD DSN=K3.SOJGM.S0002.PAXII,DISP=SHR

Figure 9. JCL for INTRPRET

NOT REPRODUCIBLE

22

4.4 TASK PROCESSING ENVIRONMENT

The tasks waiting in the input queue are processed in the task processing environ-
ment. Processing is started with the EXECUTE command. The module INTR-
PRET is deleted from core and the module TASKPROC is loaded and receives
control. TASKPROC is a modified version of the module VMJCPHAS in the
VICAR system. It reads a task from the input queue and processes its param-
eters and labels. Parameters for a task are submitted in free-form format and
may be in one of several types (Integer, Real, Alphameric, Hexadecimal, Lite-
ral). The parameters are stored in the task queue in their original EBCDIC
form. TASKPROC translates all parameters to an internal computer representa-
tion which the processing programs can utilize. The translated parameters are
written temporarily into the disk data set VSYSOO. Image processing programs
obtain these parameters by calling the routine PARAM.

Image processing programs are written using the data set reference numbers 2
to 11 for input data sets and the data set reference numbers 1 and 12 to 14 for
output data sets. TASKPROC initializes the MCB's in VICINT and establishes
thereby the linkage between these data set reference numbers and a specific data
set or device. It builds also a table with the task name which is later used to
load the particular image processing program into the main memory. Then the
image processing program is fetched from the library, replaces TASKPROC in
core and starts processing.

The processing programs, in general, expect a standard data format for all in-
put and output data sets. This consists of a label set followed by a number of
data records. Normally TASKPROC copies the label set from the primary
input data set to any specified output data sets. The system label record is up-
dated. If the programmer has specified optional user labels to be added, TASK-
PROC adds these to the label set on the output data sets. This automatic label
processing is suppressed if the first character in the taskname is a V.

In addition, VMJC positions all input and output data sets to a point just prior to
the first data record. An image processing program does, therefore, not have
to skip the label records. Upon completion of a task, TASKPROC is reloaded and
the next task is initiated. When the last task from the queue has been completed,
the dialogue module INTRPRET is loaded into core, its previous state is restored
and the system waits for further requests to process. This is indicated with an
audible alarm and the display of a cursor in the lower left corner of the screen.
Fig. 10 lists the JCL statements for linking TASKPROC and putting it into the
library.

23

// EXEC ASMG
//SYSIN DD DSN=TASKPROC.SOJGM,UNIT=2400,LABEL=(4,SL,, IN),
// VOL=SER=Z1610,DISP=(OLD,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200
// EXEC LINK,PARM='XREF,LIST,MAP,LET'
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR
// DD DSNAME=SYS2.LINKLIB,D ISP=SHR
// DD DSN=K3.T1DAK.T1005.LVICARSB,DISP=SHR
// DD DSN=SYS1.FORTLIR,DISP=SHR
//SYSLMOD DO DSN=K3.SOJGM.S1011.VICINT,DISP=OLD
//OBJECT Do *
INCLUDE LIBRY(SYSMSG)
ENTRY VMOD03
NAME TASKPROC(R)

//LIBRY DD DSN=K3.SOJGM.S0002.PAXIIDISP=SHR

Figure 10. TASKPROC JCL

4.4.1 Task Characteristics

Each image processing task involves execution of a program which must exist
in the SMIPS library (data set name K3. SOJGM. S1011. VICINT) or in the VICAR
library. The programs may be written either in assembly language or FORTRAN
IV and may include any number of subroutines. All features of these languages
may be used with the exception that for input/output of pictorial data the FOR-
TRAN I/O statements READ and WRITE and the assembly I/O macros should
not be used. The application programs communicate with the data management
facilities of OS/MVT through the I/O handler in VICINT. This routine super-
vises all the I/O operations of the application program. Up to 14 simultaneous
I/O requests are supported and the processing of any direct access or tape data
file may be either sequential or random.

Application programs are required to open data sets prior to use. The program
may close its data sets. If not, the system will automatically close any open
data sets at the end of the task. SMIPS uses the VICAR I/O routines which
are described in [31. FORTRAN application programs may be written in two
forms:

1. The FORTRAN program is coded as a subroutine with no arguments. In
this case no FORTRAN I/O statements are allowed and the program has
to use the PRINT routine of VICAR for printing on the high speed printer.
Linkage-editing of the program module should include the VICAR rou-
tine FAKIBCOM. This routine provides some service functions which
are normally handled by the IBM routine IBCOM#. IBCOM# is a very
complex program which handles FORTRAN input/output control, program

24

linking, library routine error handling and program termination at a
cost of over 10 K bytes of core. FAKIBCOM provides IBCOM# initiali-
zation, library routine error handling and program exits at a cost of
only 200 bytes of core.

2. The FORTRAN program uses the FORTRAN I/O statements. In this
case the program has to be written as a main program and FAKIBCOM
should not be included in linkage-editing. IBCOM# will be automatically
linked.

4.4.2 Communication between SMIPS and Application Programs

The communication between a task program and the system is accomplished with
a transfer vector. The transfer vector provides the entry points to the I/O han-
dler and to the image display facilities provided by VICINT. The routine LIN-
KUSER which builds the transfer vector and provides the addresses of the entry
points should be included when linking the program module. This routine re-
ceives control when execution of an image processing task is started, binds the
addresses in the transfer vector and passes control to the program. Application
programs should exit with CALL END which will assure the continuation of task
processing.

There are two sources of input to an application program, the input label and in-
put parameters. The input label contains in word 9 the number of lines in the
picture and in word 10 the number of bytes in one line. The input parameter
table is placed by TASKPROC into the data set VSYSOO. By a call to PARAM in
the application program, the I/O handler reads the parameter table into the buf-
fer designated by the program. The parameter table is comprised of two sec-
tions, (1) system parameters and (2) user parameters. The first 10 words of the
parameter table (Fig. 11) are reserved for system parameters. The first four
words contain binary integers representing the output picture dimensions. This
data are taken from the size field in the task specification. The fifth and sixth
words are binary integers representing the input picture dimensions. These
data are taken from the input label. The seventh and eighth word contain the
number of input and output data sets for this task respectively. The tenth word
contains the length of the parameter table in full words.

4.4.3 Communication between Application Programs

Application programs cannot only receive the parameter table provided by the
system but they may also access parameters generated by another application
program. Any task is allowed to generate parameters for other tasks. The com-
munication problem is solved by a message transfer mechanism. Messages

25

SL (OUTPUT)

SS (OUTPUT)

NL (OUTPUT)

NS (OUTPUT)

SYSTEM NL (INPUT)

PARAMETERS NS (INPUT)

NI

NO

LENGTH (WORDS)

USER
PARAMETERS

Figure 11. Parameter Table

(mail) are put into a circular list by the sending task and picked up from the list
by the receiving task.

The sending task requests a mail block, puts its name and the name of the re-
ceiver into the block as well as the length of the mail and the mail itself. A
call to PUTMAL inserts the mail block into the list. The receiving task which
can only proceed with the information from a certain sender inquires the list by
calling the routine GETMAL. If mail for the task coming from the specified
sender is found, GETMAL transfers the information to a specified buffer. Other-
wise, the task cannot proceed and returns control with an appropriate message.
Some tasks may continue processing with default parameters. The format of
the mail block is shown in Fig. 12.

SENDER NAME

RECEIVER NAME

NUMBER OF
WORDS IN MAIL

MAIL
INFORMATION

Figure 12. Mail Block Format

26

4.4.4 Adding or Replacing a Program in a Library

SMIPS programs are stored in two partitioned data sets named K3. SOJGM. S1011.
VICINT for the module VICINT, INTRPROC, TASKPROC and the executable
image processing programs and K3. SOJGM. S0002. PAXII for all subroutines. The
following examples show how to add a SMIPS program and a subroutine to the
libraries.

The JCL statements required to add an image processing program (FOTO in the
example) to the data set K3. SOJGM. S1011.VICINT are listed in Fig. 13. The
JCL statements needed to add a subroutine (PICTUR in the example) to the sub-
routing library K3. SOJGM. S0002. PAXII is shown in Fig. 14.

// EXEC LINK,PARM='XREF,MAP,LIST,LET'
//SYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
// DD DSN=SYS2.LINKLIB,DISP=SHR
// DD DSN=K3.T1DAK.T1005.LVICARSB,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS2.FORTLIB,DISP=SHR
//SYSLMOD DD DSN=K3.SOJGM.S1011.VICINT,DISP=OLD
//SYSLIN DD *
CHANGE USERPROG(PICMAG)
INCLUDE LIBRY(LINKUSER)
INCLUDE SYSLIB(FAKIBCOM)
INCLUDE LIBRY(PICMAG)
INCLUDE LIBRY(COLPIC)
INCLUDE LIBRY(CHCKRT)
INCLUDE LIBRY(TEXTGEN)
INCLUDE LIBRY(LINECH)
ENTRY USER
NAME FOTO(R)

//LIBRY DD DSN=K3.SOJGM.S0002.PAXII,DISP=SHR

Figure 13

// EXEC LIN, PARM='L'CAI HAiP, LIST'
//SYSI MOD DD DSt'=K3.SOJ,1. S0002.PAXI I,DISP=OLP
//ORJFCT DP *

ENTRY PrTtlP
NAIIE PIrTLIP()

Figure 14 NOT REPRODUCIBLE

27

5. DATA ORGANIZATION IN SMIPS

5.1 DATA STRUCTURES

For the user of an image processing system the pictoral information has to be
structured in terms of his terminology. This information is converted to another
form for storage and processing by the computer. In a computer system the in-
formation is usually structured in files, records and fields. This section reviews
briefly some operations on data structures and describes the data organization
in the SMIP system.

A record is a collection of information; it is divided into fields. In SMIPS an
image line is treated as a record of variable length. All fields of a record are
of equal length (byte, halfword, fullword, doubleword) and hold one picture ele-
ment (1 pixel). A file (data set) is a collection of records. In SMIPS a picture
is represented by one file. Picture files have a sequential organization. A
block is the amount of information transferred between an I/O device and memory
during one I/O operation. Blocking, the storing of a number of records in one
block, is used in SMIPS to save space and computer time.

Each picture existing in the system has location, name and value as attributes.
Each of these elements is structured and there exist relations between them.
There are three sets known to the system.

N set of names

L set of locations

V set of values

L, the set of physical locations, is in one to one correspondence with N.

Name Space

The name of a picture is the attribute which is given to it when it is created. The
name is unique; at the same time several pictures with the same name cannot
exist.

To access a picture by its name a relation between the name and the location of
the picture (the table of contents) has to be established. This relation is called
the catalogue of picture names.

catalogue
name space : table of contents

28

Another role of the catalogue is to determine the uniqueness of the names.
Upon creation of a new picture name the catalogue is consulted to determine if
a picture with the same name already exists. A name is a string of alphameric
characters beginning with a letter and is created by the user (external name).
The system then automatically assigns an internal name to the picture.

The logical access algorithm gives the value from the name.

logical access algor.
name space - value space

Value Space

The value of a picture is the information stored in its location. It is the result
of the execution of the logical access function with the picture name given as a
parameter. The data value has to be interpreted according to the coding con-
vention. In an image processing system the data are binary coded intensity
values and alphameric characters representing a description of the picture (size
of picture, origin, date of creation, spectral band, history of processing, etc.).

During the existence of a picture in the system its value can change as well as
the size of the location.

There are certain defining rules associated with picture data.

-range and coding of the values
-different methods of naming

This set of rules defines the type of data and the data of same type have a generic
name. The table of generic names is called symbol table.

In a sequentially organized file where only the data item following the last ac-
cessed is accessible, it is not necessary to have a name for each item. In this
case the use of the generic name is not ambiguous. Thus, a name in SMIPS
refers to a file holding an image.

The second type of information in an image processing system are application
programs. These programs exist in a file with partitioned organization. The
name of the file is the generic name and each member is referred to by its prop-
er name. Several of these files concatenated form a library.

29

5.2 OPERATIONS ON THE DATA STRUCTURES

Five sets have been defined:

L set of locations

N set of names

NG set of generic names

V set of values

0 set of undefined values

The following operations on the data structures representing these sets are used
in SMIPS:

1. Creation of a picture
The creation consists of three steps:

a) Allocation (0 - L)
Find a free place in the table of contents for the disk on which space
for the picture is to be allocated. The size is furnished by the sym-
bol table. Allocation of disk space for SMIPS images is accomplished
by the operating system in a separate job (ALLOCATE).

b) Naming (0 - N)
The picture name is specified (created) by the user with the RE-
SERVE command. A name already used for another picture is re-
fused. The RESERVE command allows allocation and naming at the
same time. In the OS/360 operating system dynamic allocation of
disk space is not possible. Therefore, the allocation of the disk
space used for storing images is accomplished in a previous job. The
RESERVE command selects only an area of the preallocated space and
assigns a name to it.

c) Initialization (0 -, V)
This operation takes place after allocation and naming. In the mean-
time, the picture exists but has no value. SMIPS does not allow to
access a picture before its initialization. Initialization is accom-
plished with the READ, SAVE or THRESHOLD commands or as out-
put of an image processing task.

2. Logical access (N -V)
Logical access is the product of localization (N - L) and physical ac-
cess (L - V). These operations are performed by SMIPS routines and
the operating system.

30

3. Suppression of a picture
The suppression of a picture consists of:

a) Deallocation (L -+ 0)
The space occupied by the picture is returned to the list of available
space.

b) Unnaming (N - 0)
The picture name referred to is deleted from the catalogue. This
name could be used to name another picture.

These operations are accomplished with the FREE command.

Access to image processing programs in the library is entirely accomplished by
functions of the operating system.

5.3 INTERFACE SMIPS TO OS/360

Data manipulated by OS are called data sets (corresponding to a file), their
symbol table is constituted by the Data Control Blocks (DCB's). Each data set
is located on a volume (disk, tape) and each volume has a table of contents, called
VTOC, associated with it. An element of the VTOC is called a Data Set Control
Block (DSCB). Pictures are stored in sequential data sets, image processing
programs in partitioned data sets which form the system library.

The DDNAME is the external generic name for a class of data sets, the DCB
address is used as internal generic name. The Job File Control Block (JFCB)
gives the correspondence between DDNAME and the corresponding volume. Due
to the sequential organization of a picture data set there is a one to one corres-
pondence between a picture name and the generic name of a data set. Therefore,
the correspondence between a picture name and the data set allocated for that
picture is established in the following way. The index of the picture name in
the catalogue is used to calculate another index for retrieval of the DCB address
from the symbol table (see Fig. 15). The same index is inserted in the Main-
tenance Control Block (MCB) for the associated logical Data Set Reference Num-
ber (DSRN). The DSRN's are used in the I/O calls to the I/O handler.

For image processing programs specified in the input mode, the routine TASKQ
determines the indices from the referenced picture names and passes them to
TASKPROC, which in turn inserts the indices into the MCB's. Upon execution,
the I/O routines called in the image processing program use these indices in the
MCB's to retrieve the associated data sets. Routines doing I/O operations in the
modules VICINT and INTRPRET should set themselves the appropriate symbol
table indices in the MCB's.

31

CATALOGUE OF SYMBOL TABLE
PICTURE NAMES (DCB ADDRESSES) DCB

PICT. NAME A DDNAME

MCB DSRNJFCB

I/O
CONTROL

INFORMATION
SMIPS

VOLUME VTOC

DSCB

PICTURE
VALUES

Figure 15. Correspondence Picture Name-Picture Values

5.4 DATA MANAGEMENT IN SMIPS

Data management in SMIPS is disk oriented. The display transformation rou-
tines and application programs read pictures only from disk and result pictures
are written to disk data sets in the standard format. The transfer of pictures
between magnetic tape and disk data sets has to be explicitly specified by the
user with the READ and WRITE commands respectively. An exception are the
application programs which produce tapes for the Calcomp plotter and the E. I. S.

32

machine. These programs write their output directly to tape because of the
special format used.

Before a picture can be used it must have been created in the system. The three
steps of creation (allocation, naming, initialization) are described in section 5.2.
A picture can be used if it has been initialized by a READ, SAVE or THRESHOLD
command or as output picture in an image processing task.

The catalogue of picture names is the field NTABLE in COMMON/LRECL/. In
the current implementation the catalogue can hold up to 20 picture names. Each
picture name has several attributes associated with it. The initialization flag
which indicates if the picture is initialized and the core flag indicating if the pic-
ture is in core are contained in the field USFLAG in COMMON/LRECL/. The
record length (line length) of the picture and the blocksize used to pack several
lines into a physical record are contained in the field LRECLS in COMMON/
LRECL/. These fields are accessed with the same index as the catalogue.

The RESERVE command inserts the picture name into the catalogue, computes
the blocksize and inserts record length (equal to NS) and blocksize into the field
LRECLS. The FREE command deletes the picture name from the catalogue and
sets the flags, record length and blocksize to zero. The released space can then
be allocated to another picture.

The INPUT/OUTPUT handler is a multientrant part of the core-resident module
VICINT. It consists of a set of routines, callable from FORTRAN and assembly
programs, that provide the interface between the image processing programs and
the data management of OS/MVT. The Basic Sequential Access Method (BSAM)
is used. The I/O handler supports input/output operations and other data man-
agement functions like opening, closing and double buffering of data sets. These
procedures are controlled by Maintenance Control Blocks (MCB's). There is an
MCB for each data set. An MCB contains fields for control information such as:

data set opened or closed

single or double buffer

input or output data set

device type (tape or disk)

I/O status

current record number pointer

blocking factor

number of labels

33

There are also fields to keep track of buffer addresses and lengths and for the
index in the symbol table (DCB Table). Before opening a data set, record length
and blocksize are automatically copied from the table LRECLS into the corre-
sponding DCB. This is necessary because the user can allocate the same data
set for pictures of various sizes during a session.

The data set reference number used in the I/O statements specifies which MCB
is associated with a data set. Thus, the MCB is the interface between a logical
data set reference number and a physical device. The I/O handler is a modified
version of the VICAR I/O routines which are described in [3].

6. GRAPHIC PROGRAMMING TECHNIQUES

The problem of graphic programming is to find an efficient representation of an
image and the relations among its objects in memory. This representation must
permit the easy manipulation of the represented objects.

Each graphic terminal has its own language which allows to describe the opera-
tions necessary to obtain an image on the screen. This is usually a very low
level language and it is laborious to write graphic programs with it. The in-
struction set is also very limited allowing only to display points, vectors and
possibly characters. It is thus necessary to define a high level graphic language
whose instruction permits the specification of more general graphic objects and
to allow for control of luminosity, density of points, use of light pen etc. . .
High level graphic languages have been implemented by embedding in a general
high level language [4, 5].

Considering the restricted number of display types in the SMIP system it was
decided not to implement a high level graphic language but to use the basic orders
and macro-instructions provided for the IBM 2250 display terminal [61. This
allows to optimize the design for this specific application on a given display
processor.

6.1 DEFINITION OF AN IMAGE

The basic images (points, vectors, characters) provided by a graphic terminal
are called elements. A graphic object is a set of elements illuminated with the
same intensity. It is obtained with one instruction (e. g. a string of characters).
An object can be composed of only one element. A figure is a collection of ob-
jects to which a name is assigned.

An image is the set of figures displayed at one instance on the screen. A cer-
tain ambiguity seems to exist in the fact that by using the terms figure and image

34

it is not clear if the representation in memory or the display on the screen is
meant. There is virtually no difference between these two notions. In the fol-
lowing sections image or figure will be generally used for their representation
in memory.

6.2 IMAGE STRUCTURES

The representation of an image has also to express the relations that exist among
the figures forming an image. Such a representation is called an image struc-
ture. A display file is the list of instructions and data of an image. By repeat-
edly executing this list, the display processor attempts to maintain a flicker-
free picture on the screen of the cathode-ray tube. In such a simple structure
each figure is repeated in the list at each occurrence. If an image has to be
modified the entire display file has to be changed.

An improvement of this technique is the use of structured display files. Here
figures are constructed by subroutines and the display file is organized into a
tree structure as is shown in Fig. 16. The display processor refreshes the
picture by threading its way through this structure, interpreting the pointers as
subroutine calls. Structured display files are more easily modified than the un-
structured files, since one element of the display can be modified without dis-
turbing the rest. Objects which occur repeatedly can be represented by subrou-
tines, and in this way the size of the display file can be reduced. It is also pos-
sible to link interrupts, received from a pointing device such as a light pen, to
the appropriate parts of the structure. Structured display files have some draw-
backs. They are designed for a specific display device so that refreshing may
be carried out as fast as possible. As a result it is usually very troublesome

IMAGE FIGURES OBJECTS

Figure 16. Structured Display File

35

to convert graphical programs from one machine to another. Because structured
display files are designed for a particular display device, they are bound by the
limitations of the device. In a display processor incapable of modifying the
scale of the information passed to it, the picture must be displayed at a fixed
scale. Scaling is done by software and two versions of the picture are necessary,
one for refreshing the display and the other from which scaled display files are

generated [6].

Because scaling is a very important procedure in an interactive image processing
system, the SMIP system uses a scaled display file. The transformation rou-
tines taking pictorial information from the general picture data structure are
combined with the graphic output routines which feed into the scaled display file
(Fig. 17). For picture display, the routine PICTUR is the transformation rou-
tine which scales and possibly truncates the picture in order to fit on the screen
of the display device. PICDSP is the graphic output routine whose function is to
assign characters to greylevels and to write the result of PICTUR to the figure
PICT in the scaled display file which is maintained in the buffer of the display
device.

The scaled display file of the SMIP-System consists of six figures. They are
called HEAD, FRAME, MSG, INPUT, GRID and PICT. HEAD and FRAME are
rigid figures representing the headline and the frame of the image displayed.
MSG is used to display messages from the system for the user, the figure IN-
PUT displays the user input on the alphameric keyboard. PICT is the figure dis-
playing information in the form of pictures, histograms and alphameric des-
criptions. The figure GRID is overlaid on PICT and is used for the display of
grids or polygons outlining areas with same greyvalues.

The graphic orders and data constituting the display files are organized in a
linked tree structure and are continuously regenerated for visual display. A
figure is included in the visual display by setting a pointer to its display file and
deleted by removing the pointer. The last instruction in each figure is a trans-
fer back to the following location in the root of the display file tree. Interrupts
from the light pen can only occur in the figure PICT, they can therefore be easily
related to the item at which the light pen pointed.

OUTPUT AND SCALEDDATA TRANSFORM. DISPLAY DISPLAY
STRUCTURE ROUTINES FILE

Figure 17. Scaled Display File

36

The root of the display file tree is shown in Figure 18.

GSRT START REGENERATION TIMER
2

0 NOT USED

GPDP DISABLE LIGHT PEN DETECT
8

HEAD

12

FRAME

16
MSG

20
INPUT

24

GRID
28

GESD ENABLE LIGHT PEN DETECT
30

PICT
34

Figure 18. Display File Tree

6.3 DESCRIPTION OF THE IBM 2250 DISPLAY UNIT [81

The 2250 is organized around a cathode ray tube on which graphic and alphanu-
meric information is displayed, thereby providing visual communication between
the computer and its user. Keyboards and light pen provide a means of entering
and modifying information. The 2250 equipped with the absolute vector graphics
features can display points and vectors at any angle on a raster of 1024 by 1024
points. Points plotted four or more raster units apart can be distinguished as
discrete points. A standard character set of 63 alphabetics, numerics and
special symbols is provided by the character generator. 74 basic size characters
can be displayed in each of 52 lines. The distance between the center of two
characters is 56 raster units, the distance between two lines is 80 raster units.
The display area is 12 inches by 12 inches. The alphameric keyboard is a type-
writer like keyboard with which the user can compose commands for entry into
the system. 44 keys and a space bar provide a selection of 63 characters. In
addition there are the keys:

37

SHIFT allows selection of the upper character in a dual char-
acter key.

ALT unlocks the keyboard when depressed with SHIFT.

END signifies the end of manually entering alphameric char-
acters from the keyboard. When depressed with ALT it
initiates the transfer of the character string entered to
main memory.

SPACE advances the cursor one buffer position.

BACKSPACE backspaces the cursor one buffer position.

Depression of a character key provokes insertion of the character into the buf-
fer position indicated on the screen by the cursor symbol. The cursor symbol
is a dash displayed beneath the character position at which the character selected
at the keyboard will be placed. If the cursor is not displayed, characters can
not be inserted.

The programmed function keyboard consists of 32 keys and light indicators. The
function of each key is program defined and is identified to the user by the over-
lay. When a key is depressed, an attention signal is sent to the CPU and the com-
puter acts as directed by the subroutine associated with the selected key. The
indicators can be lit or extinguished under program control and inform the user
that certain keys can be activated.

The light pen enables the user to communicate with the computer by pointing a
pen-like device at a portion of the displayed image. Once the light pen is prop-
erly positioned, the user depresses the light pen to the screen to close the
springloaded tip switch. This causes an attention signal sent to the CPU and the
system acts on the identified portion of the display as determined by the associ-
ated subroutine.

The visible display on the CRT is produced by action of an electron beam causing
the phosphor coating to glow briefly. The glow fades within a fraction of a sec-
ond, therefore, the display must be regenerated at such a rate that it appears
steady to the observer. The regeneration rate is variable up to a rate of 40 cps
(25 ms) dependant on the amount of information displayed. If the time required
to execute a sequence of graphic orders that follow a Start Regeneration order
(GSRT) exceeds 25 ms, the display will flicker. A suitable display is obtained
with a regeneration rate of 30 to 40 cps.

The 2250 disposes of a local buffer to store images for display regeneration.
This enables the 2250 to operate concurrently with the computer system freeing

38

main storage and the channel for other purposes. I/O interface activity is only
required when a new display file is sent to the buffer. The buffer size is 8192
bytes. For SMIPS the buffer of the 2250 display device is divided into fixed par-
titions. Each partition can hold a figure of the structured display file. This
allows efficient transfer of parts of an image between buffer and main memory
rather than the transfer of the whole image at each modification. The addresses
of the partitions are contained in the buffer control table. The table contains
also the address of the work area in which the display file or figures of it are
constructed prior to transfer to the buffer (Fig. 19).

6.4 PROGRAMMING THE 2250 DISPLAY UNIT

A sequence of graphic orders interleaved with data constitutes a program for the
display device. The orders determine a specific operation, such as drawing a
line, displaying a character or transferring to another buffer address for the
next instruction. The data following each order contain the information neces-
sary to perform the specified operation. The first instruction in a graphic pro-
gram must be the, start regeneration order, the last order should be a transfer
to the beginning of the program. While executing this program the display unit
produces an image on the screen. The graphic program can be executed only in
the device buffer.

The basic programming technique for the 2250 display unit consists in the fol-
lowing steps:

1. Build a scaled display file or parts of its structure as a graphic program
in a workarea in main memory. For the SMIP system the output and
transformation routines provided in the system are to be used.

WORK AREA

BUFFER START

MESSAGE FIGURE

INPUT LINE FIGURE

PICTURE FIGURE

GRID FIGURE

Figure 19. Buffer Control Table

39

2. Transfer the display file to the appropriate location in the 2250 buffer.

3. Start execution of the regeneration sequence.

Commands from the user are assembled and edited in the buffer. On request
they are transferred to main memory for further processing. The graphic orders
and the instructions to initiate the data transfer between main memory and de-
vice buffer are listed in [61.

6.5 COMMUNICATION HANDLING

Communication with the system is initiated by depressing keys on the keyboards
or by touching a part of a display with the light pen. Any of these actions results
in an attention. The SMIP system provides routines to be entered on receipt of
such an attention.

The SMIP system supplies information to the operating system concerning which
routines are to respond to what types of attentions. The operating system de-
tects the occurrence of an attention, interrupts the currently processing routine
and passes control to the appropriate attention handling routine. After this rou-
tine has performed its function, control returns to the interrupted routine. At-
tentions for which no attention handling routine is available are ignored.

Each SMIPS routine which has to process communications with the user is de-
signed according to the following rules:

1. Define the attention handling capabilities of the routine to the operating
system. In particular specify the attention handling routines and the
types of attentions to be serviced by these routines. Define a communi-
cation area in main storage to which the operating system will pass at-
tention information (type of attention, key number, coordinates of light
pen position).

2. Enable operating system references to the attention routines.

3. Wait for specific attentions.

4. Upon return from the attention handling routines disable operating sys-
tem references to these routines.

5. Process the attention information in the communication area.

6. Go to step 2 if no exit condition was specified in step 5.

The only function of the attention handling routines is to notify the operating sys-
tem on completed attention processing. The actual processing is performed in

40

the main routine rather than in the attention handling routine to facilitate com-

munication between various parts of the system.

6.6 COMMUNICATION WITH THE 2250 DISPLAY UNIT

All system routines and application programs are allowed to access the display
unit and to send figures to its display file. Communication with the 2250 is es-

tablished with the Graphic Control Block (GRCBLK). The GRCBLK is built by
the routine DISPIN in VICINT. It contains the address of the DCB for the 2250
display unit (DDNAME = GRAVIC), the address of the Data Event Control Block

(DECB) for I/O operations of the 2250, the address of the Output Area Control
Block (OACB) used for I/O operations, the address of a 100 word work area

used by problem oriented graphic routines and the address of the buffer control

table (Fig. 20). Any routine which is not in the core resident module VICINT

establishes communication with the 2250 by a CALL GRCBLK which returns

the address of GRCBLK in register 1 from the transfer vector.

7. LIGHT PEN TRACKING

The SMIP System provides for a light pen tracking capability. Light pen tracking

could be used to outline areas by border detection and to produce maps from the
pictorial data. Basically connected regions in form of polygons are generated on

the screen with the aid of the light pen. The coordinates of the corner points of
each polygon are recorded in a data structure (a sequential list).

The Depression of key 28 labeled TRACK enables the system for light pen track-
ing. The user may now select a picture point with the light pen and then press
key 29 labeled PICK which will trigger the procedure to record the coordinates
of the selected point (Note: if a horizontal or vertical line pattern appears on the
screen, move the light pen slightly perpendicular to the direction of the pattern).

DCB

DECB

OACB

-- N WORK

i W- BTABLE

Figure 20. Graphic Control Block

41

Repetition of this procedure will result in drawing a straight line segment be-
tween the current and the previously selected points. The last line segment
drawn can be removed by pressing key 25 labeled DELETE.

To terminate a polygon and start construction of a new polygon depress key 26.
Terminate light pen tracking and return to the normal dialogue mode by depress-
ing key 27 labeled NOTRACK.

REFERENCES

[11 Moik, J. G.: Small Interactive Image Processing System (SMIPS), Users
Manual. GSFC X-Document X-650-73-283.

[21 Newman, W. M.: A System for Interactive Graphical Programming. Proc.
1968 Spring Joint Computer Conference. Thompson Books 1968.

[31 JPL Digital Image Processing System Manual VICAR-Version 3, August
1968. Re-order No. 68-369.

[41 Rully, A. D.: A subroutine package for FORTRAN. IBM Systems Journal
7(1968), 248-270.

[5] Kulsrud, H. E.: A General-Purpose Graphic Language. Comm. ACM 11,
4 (1968), 247-254.

[6] IBM System/360 Operating System: Graphic Programming Services for
IBM 2250 Display Unit. Form C27-6909-5.

[71 Newman, W. M.: Display Procedures. Comm. ACM 14, 10(1971), 651-
660.

[81 IBM System/360 Component Description: IBM 2250 Display Unit Model 1.
Form A27-2701-1.

42

